

sTGC R&D at SDU for STAR ☆ Forward Upgrade

Chi Yang Shandong University

- Prototype production
- QA and performance test
- Pentagon prototype design

sTGC Production Procedure

Same clean room as iTPC production

sTGC Production Procedure

60cmx60cm Prototype Design

Drawing for strip layer

- √ 60cmx60cm active area
- ✓ No adapter to avoid introducing more noise
- ✓ Match TPX electronics

With several FEEs inserted

Graphite Spraying

Automatic graphite sprayer

PCBs can be sprayed together

Surface Polishing

Polish to surface resistance: $\sim 200 \text{k}\Omega/2.5 \text{cm}^2$

Measure -> Polish -> Measure

After spraying

Before polishing

Polishing

Measuring

Wire Mounts and Supporting Structure Installation

Quick HV scan

Tooling for supporting structure position constrain

A Wire Plane with Wires

Ready to be bonded to the PPPCB half to build a chamber

Wire Winding

- ✓ Wires on the side wire mounts of the PCB base
- ✓ Wire tension and pitch are kept by the winding machine
- ✓ Use ATLAS sTGC winding machine
- ✓ Wires are soldered on the wire mounts after winding
- ✓ 4 or 8 wire planes can be winded together

Combine the Upper and Lower Halfs

Two halfs combining

X-ray scan

Garfield++ Simulation on sTGC Gain

Simulation is consistent with the measurement for iTPC

F. Shen et al., NIM.A, 896 (2018) 90-95

Need at least one experimental curve to constrain for sTGC

X-ray Scan and Leakage Current Test

X-ray scan

The FWHM of leakage current is less than 20%.

Leakage current test

(b)

No spark within 24 hours

Prototype X-ray Scan

- b) The supporting area.
- c) Uniformity of the chamber.
- d) Spark.(LabView current monitoring)

The FWHM we need is less than 20%. The chamber is FWHM=10.2%.

Leakage Current Tracking

- CH2-W4H4 leakage current test results meet the requirements.
- Monitoring time: 11h
- Filling 45%n-pentane+55%co2 gas time: 24h

Performance Test System

HV: 2700V

Gas ystem: Control Evaporation Mixing

With the CEM system, mixed gas is obtained by mixing liquid and gas.

Cosmic Ray Pulses

Cosmic ray signal features:

- Time continuous (>300ns);
- The fired strips should be continuous;(>3strips)
- The charge of each Timebin (>16ADC);

Signal Selection: Space Continuous

The signal pulses of cosmic ray are distributed along the strip.

- 1. For each event, get the TB of MaxADC.
- 2. At same TB, the ADC distribution varies with the strip.

The sumADC distribution of each event at the same the strip.

STRIP number >3sigma → STRIP>=4

Signal Selection: Time Continuous

The signal pulses of cosmic ray are distributed along the TimeBin.

- 1. For each event, get the strip of the MaxADC.
- 2. The signal pulses of this strip in every event.
- 3. -3<=TB<=7; The shortest pulse is 4 timebin and the longest is 11.

30cm*30cm Prototype Detection Efficiency at STAR

Run 01106088

Cut: ADC threshold >= 10 ADC (top & bottom) adjacent Strip fired>= 4 Pulse length >= 400ns

Timing: $0-3\mu s$ (cosmic trigger)

At working voltage, the efficiency is more than 98%.

60cm*60cm Prototype Detection Efficiency at SDU

- ightharpoonup Cut: $X_{mid} \frac{X_{up} + X_{down}}{2} < 10 \text{ mm } (\sim 3 \text{ strips});$
- $Efficiency = \frac{SignalCount}{AllEvent} = 98.3\%$
- ➤ Detection efficiency of sTGC is more than 98% at 2700V.

60cm*60cm Prototype Position Resolution

Cosmic rays are not selected

Sigma is about 500um w/o any correction.

The angle of the cosmic rays in the XZ plane: 89.4°-90.6° Background: Without rotation and shift correction

Select events with an angle between 89.4° and 90.6° (in XZ plane for X direction resolution). Sigma is about 150um without rotation and shift correction.

Proposed Symmetric Pentagon Design + VMM

Current Symmetric Pentagon Drawing

Pentagon Module

- Pentagon prototype has been designed.
- Shape file has been sent to BNL integration group for space check.
- Joint screw points of integration can be added on the edges (supporting PCB sticks + screws)

Pentagon Module

Summary

- sTGC production and QA procedures has been designed.
- 60cm x 60cm prototype finished. Passed all QA and performance tests.
 - -- HV burn-in, gas tight, X-ray scan
 - -- Detection efficiency > 98% @ 2700V, position resolution ~150um w/o shifting and rotating correction
- New symmetric pentagon prototype has been designed.
 - -- 3 rows of X/Y strips (2 FEEs) + 2 rows of diagonal strips (1 FEE) for one chamber
 - -- Same design for all four layers

Future plan:

- Ship the 60cm x 60cm prototype to BNL in early March
- Send the drawing to vender for production in March
- Design the tooling for pentagon shape
- Improve the procedure due to the pentagon shape

Backup

sTGC Geometry

sTGC layout-side-view

Wire: Φ50μm Au-plate tungsten wire, 1.8mm pitch

Working gas: 45% n-pentane + 55% CO₂

Honeycomb paper for mechanic support outside of the layer or in between two layers